08. Standardizing Data
Standardizing Data
Question:
Start Quiz:
import numpy as np
# First 20 countries with employment data
countries = np.array([
'Afghanistan', 'Albania', 'Algeria', 'Angola', 'Argentina',
'Armenia', 'Australia', 'Austria', 'Azerbaijan', 'Bahamas',
'Bahrain', 'Bangladesh', 'Barbados', 'Belarus', 'Belgium',
'Belize', 'Benin', 'Bhutan', 'Bolivia',
'Bosnia and Herzegovina'
])
# Employment data in 2007 for those 20 countries
employment = np.array([
55.70000076, 51.40000153, 50.5 , 75.69999695,
58.40000153, 40.09999847, 61.5 , 57.09999847,
60.90000153, 66.59999847, 60.40000153, 68.09999847,
66.90000153, 53.40000153, 48.59999847, 56.79999924,
71.59999847, 58.40000153, 70.40000153, 41.20000076
])
# Change this country name to change what country will be printed when you
# click "Test Run". Your function will be called to determine the standardized
# score for this country for each of the given 5 Gapminder variables in 2007.
# The possible country names are available in the Downloadables section.
country_name = 'United States'
def standardize_data(values):
'''
Fill in this function to return a standardized version of the given values,
which will be in a NumPy array. Each value should be translated into the
number of standard deviations that value is away from the mean of the data.
(A positive number indicates a value higher than the mean, and a negative
number indicates a value lower than the mean.)
'''
return None